Partyflock
 
Forumonderwerp · 592131
134x bekeken
Waarschuw beheerder
Asymptotes

Definition of a horizontal asymptote: The line y = y0 is a "horizontal asymptote" of f(x) if and only if f(x) approaches y0 as x approaches + or - .
Definition of a vertical asymptote: The line x = x0 is a "vertical asymptote" of f(x) if and only if f(x) approaches + or - as x approaches x0 from the left or from the right.

Definition of a slant asymptote: the line y = ax + b is a "slant asymptote" of f(x) if and only if lim (x-->+/-) f(x) = ax + b.

Concavity
Definition of a concave up curve: f(x) is "concave up" at x0 if and only if f '(x) is increasing at x0
Definition of a concave down curve: f(x) is "concave down" at x0 if and only if f '(x) is decreasing at x0

The second derivative test: If f ''(x) exists at x0 and is positive, then f ''(x) is concave up at x0. If f ''(x0) exists and is negative, then f(x) is concave down at x0. If f ''(x) does not exist or is zero, then the test fails.

Critical Points
Definition of a critical point: a critical point on f(x) occurs at x0 if and only if either f '(x0) is zero or the derivative doesn't exist.
Extrema (Maxima and Minima)
Local (Relative) Extrema
Definition of a local maxima: A function f(x) has a local maximum at x0 if and only if there exists some interval I containing x0 such that f(x0) >= f(x) for all x in I.

Definition of a local minima: A function f(x) has a local minimum at x0 if and only if there exists some interval I containing x0 such that f(x0) <= f(x) for all x in I.

Occurrence of local extrema: All local extrema occur at critical points, but not all critical points occur at local extrema.

The first derivative test for local extrema: If f(x) is increasing (f '(x) > 0) for all x in some interval (a, x0 ] and f(x) is decreasing (f '(x) < 0) for all x in some interval [x0, b ), then f(x) has a local maximum at x0. If f(x) is decreasing (f '(x) < 0) for all x in some interval (a, x0 ] and f(x) is increasing (f '(x) > 0) for all x in some interval [x0, b ), then f(x) has a local minimum at x0.

The second derivative test for local extrema: If f '(x0) = 0 and f ''(x0) > 0, then f(x) has a local minimum at x0. If f '(x0) = 0 and f ''(x0) < 0, then f(x) has a local maximum at x0.

Absolute Extrema

Definition of absolute maxima: y0 is the "absolute maximum" of f(x) on I if and only if y0 >= f(x) for all x on I.

Definition of absolute minima: y0 is the "absolute minimum" of f(x) on I if and only if y0 <= f(x) for all x on I.

The extreme value theorem: If f(x) is continuous in a closed interval I, then f(x) has at least one absolute maximum and one absolute minimum in I.

Occurrence of absolute maxima: If f(x) is continuous in a closed interval I, then the absolute maximum of f(x) in I is the maximum value of f(x) on all local maxima and endpoints on I.

Occurrence of absolute minima: If f(x) is continuous in a closed interval I, then the absolute minimum of f(x) in I is the minimum value of f(x) on all local minima and endpoints on I.

Alternate method of finding extrema: If f(x) is continuous in a closed interval I, then the absolute extrema of f(x) in I occur at the critical points and/or at the endpoints of I.
(This is a less specific form of the above.)

Increasing/Decreasing Functions
Definition of an increasing function: A function f(x) is "increasing" at a point x0 if and only if there exists some interval I containing x0 such that f(x0) > f(x) for all x in I to the left of x0 and f(x0) < f(x) for all x in I to the right of x0.
Definition of a decreasing function: A function f(x) is "decreasing" at a point x0 if and only if there exists some interval I containing x0 such that f(x0) < f(x) for all x in I to the left of x0 and f(x0) > f(x) for all x in I to the right of x0.

The first derivative test: If f '(x0) exists and is positive, then f '(x) is increasing at x0. If f '(x) exists and is negative, then f(x) is decreasing at x0. If f '(x0) does not exist or is zero, then the test tells fails.

Erg interessant :D :D
laatste aanpassing
Waarschuw beheerder
Wetenschap :S ?

Heb even de tijd genomen om het door te lezen , het staat er misschien wel heel interessant opgeschreven maar dat is 4e klas wiskunde van de middelbare school :P
Waarschuw beheerder
:d :d :d
Waarschuw beheerder
ja inderdaad, probeer eens een Nederlands wiskunde boek ofzo...de bieb...helemaal zo gek nog niet
Waarschuw beheerder
He Fonz, misschien zit je wel op 't verkeerde forum :P
Waarschuw beheerder
Neeee, ik ga hier pas weg als ik 10.000 postings heb gehaald, tot dan: Enjoy!!
 
Waarschuw beheerder
(permanent verbannen)
heb liever dat je meteen oprot:9
Waarschuw beheerder
hmmm ik bemerk een vijandige sfeer jegens mijn inemende persoonlijkheid :D
 
Waarschuw beheerder
(permanent verbannen)
nee hoor poepie :lief: hou van jou

















[IMG]http://smilies.networkessence.net/s/contrib/sarge/Axe_anim.gif[/IMG]
Waarschuw beheerder
[IMG]http://216.40.249.192/mysmilies/contrib/sarge/BoomSmilie_anim.gif[/IMG]
[IMG]http://www.jamezbrown.com/mysmilies/contrib/ed/BlueFlagRocket.gif[/IMG]
Die site ken ik ook hoor
Waarschuw beheerder
[IMG]http://216.40.249.192/mysmilies/contrib/owen/council.gif[/IMG]
 
Waarschuw beheerder
(permanent verbannen)
[IMG]http://www.gamers-forums.com/smilies/contrib/fk/daisy.gif[/IMG] ken jij die site ok joh :9 wauw heil fonz